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Abstract

Semelparous organisms have a simple life-cycle characterized by death
after reproduction. We assume that semelparous life histories can be
separated into a juvenile non-reproductive period followed by an adult
period during which reproduction is possible. We derive formulas for
the optimal age and size at reproduction and for the optimal size
of offspring (e.g., seeds) and formally prove for the first time when
the optimal size of the offspring does not depend on the optimal size
at reproduction and when the optimal size at reproduction does not
depend on the optimal size of the offspring.
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Introduction, Assumptions and Notation

“Plants of any size have seeds that vary approximately 400-650-fold between
species”, as Venable and Rees (2009) point out; they note that “Sequoia
sempervirens has a seed mass of 0.0037 gram.” Species of animals also vary
widely in the size of offspring. What evolutionary factors determine the size



of mature adults vs. the size of progeny? This question is the subject of
a large body of literature. Moles et al. (2005), Rees and Venable (2007),
Falster et al. (2008) and Venable and Rees (2009) provide useful overviews
of the literature on plants. An early framework was proposed by Smith
and Fretwell (1974) and expanded by Geritz et al. (1999). Charnov (1993)
developed a different perspective with a focus on mammals. Our contribution
is to build a biodemographic framework that unifies predictions about adult
size and offspring size in simple, precisely-defined optimization models and
to rigorously prove key implications of these models. We achieve simplicity
by focusing on semelparous species, which reproduce once and die.

Evolutionary biologists have taken advantage of the simplicity of the
semelparous life history. For example, demographic models have been de-
veloped to explore how stochasticity affects reproductive delays (Tuljapurkar
1990), how variation in growth shapes plasticity in timing of reproduction
(Burd et al. 2006), and how the evolution of reproductive delays interacts
with pre-reproductive delays such as seed-banks (Rees et al. 2006). However,
to date, no single analytical framework providing dynamic insights into opti-
mal life-histories of semelparous species has been developed. There is a need
for such theory to separate the effects of complexities such as changing preda-
tion regimes and resource limitation (Abrams and Rowe 1996) and stochastic
environments (Tuljapurkar 1990) from patterns driven by the general prin-
ciples underlying demographic trajectories. Here we make a start at filling
this gap by providing an analytical framework that unifies treatment of the
two main axes of life-history variation in such species: the optimal timing of
reproduction and the optimal offspring size. We focus on the simplest case
of constant environments and constant population size.

The life cycle of semelparous species can be viewed as a two-phase pro-
cess driven by different mechanisms. Stage 1 is a juvenile non-reproductive
period, in which some individuals survive to become adults. Adults can re-
produce and when they do, they die. Hence stage 2 is the period of life in
which individuals seek to maximize their reproduction by weighing at each
instant the benefits of delaying reproduction further with the risk of death
associated with this delay. Mortality in stage 1 is assumed to be indepen-
dent of mortality in stage 2. We assume size 1 is the milestone between the
two stages. Without loss of generality, we can further assume that size 1
corresponds to adult age 0. In an analysis of the optimal timing of repro-
duction, it is not necessary to consider stage 1: knowledge of how long it
took the organism to reach size 1 is irrelevant. Table 1 summarizes the basic



characteristics of stage 1 vs. stage 2.

Stage  Growth Mortality Reproduction

Stage 1 Yes Yes No
Stage 2 Yes Yes Yes

Table 1: Basic characteristics of two life-history stages for semelparous
species

Let a be the age of the organism, age 0 being the age when size 1 is
reached; in stage 1 ages are negative. Let &(a), m(a), and p(a) denote
the organism’s size, its reproduction capacity, and the force of mortality,
respectively, at age a. By assumption, £(0) = 1. Let « denote the age at
which reproduction occurs. Let n(a,¢) be the number of offspring produced,
with each offspring (e.g., seed) being the same size ¢. Note that 0 < ¢ < 1.
Finally, let p(¢), 0 < p(¢) < 1, be the probability that an organism born at
size ¢ survives to size 1.

In this article we address three questions about semelparous organisms.
First, what is the optimal age at reproduction and what is the organism’s
size at this age? Second, what is the optimal number of offspring and what
is the optimal size of each offspring” Third and most importantly, does the
optimal size of an organism at reproduction fo affect the optimal size of its
offspring ;7 Figure 1 summarizes the framework we will use to answer these
questions by distinguishing between the life history of parents vs. offspring.
Our first question is what determines fo, which is assumed to be equal to fl.
Our second question is what determines 7y, which is assumed to be equal to

. Our third and most important question concerns the relationship between
50 and i;. The assumptions we made about the separation of the two stages
imply that §0 and g are independent and, similarly, 51 and i1 are independent.
The key question is whether 71 and 50 are independent. This formulation has
not been clearly developed in previous studies (e.g., Kiflawi 2006) and is a
key contribution.

For simplicity of exposition, we will henceforth consider semelparous
species that are plants with offspring that are seeds.
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Figure 1: Life-histories of sizes of parents and offspring

Optimal age and size at reproduction

Stage 2, which starts once seed size no longer affects the risk of dying, is the
stage of adult growth during which reproduction is possible. If reproduction
occurs only at age o and if the chance ¢(«) of surviving to « is constant over
time and across environments, then the net reproduction rate R for such
semelparous species can be expressed as

R = € = l(a)m(a), (1)

where r is the rate of population growth, and m(«) measures reproduction
at age a; m(a) at any age a other than « is zero. This implies that

e " Y(a)m(a) =1 (2)

(Roff 2002,p189), an expression that resembles the more complicated Lotka
equation,

/000 e " l(a)m(a) da = 1. (3)



Proof that r represents the growth rate in the Lotka equation is not straight-
forward and depends on the assumption of stable populations (Arthur and
Vaupel 1984), but (2) for semelparous species is true by definition. The sim-
plicity of (2) facilitates analytical insights into optimal age at reproduction
and optimal offspring size.
Solving (2) for r yields

_ Inft(a) m(a)]

e @

(Roff 2002,p189). The value of o that maximizes r is the optimal age at
reproduction, &. It satisfies the condition

dr
— = 0, 5

Wl (5)
Inserting the expression for r from (4) into (5), solving for « the equation for
the derivative, and rearranging terms yields the requirement that the optimal

age at reproduction, denoted by &, must satisfy:

R . In (&) m(a

m(&) — p(a) = W, (6)
where m(a) = [dm(«) /da] /m(a) and p(a) = [—dl(a) /da] / €(«). Note
that 7(«) is the relative rate of improvement in reproductive capacity at age

a, and p(a) is the hazard of death (force of mortality) at age . Substituting
(4) into (6) shows that

h(a) — p(a) = r(a). (7)
In equilibrium, » = 0 and the optimal age at reproduction is defined by a

balance between the rate of growth in reproductive capacity and the force of
mortality,

h(d) = p(a). (8)
Eq. (8) implies that reproduction should be delayed as long as the reproduc-
tive benefits of further growth outweigh the risk of mortality occasioned by
delaying. The optimal age at reproduction is the age at which the benefits
of further growth are exactly offset by the risk of dying.



The optimal size at reproduction é = £(&) is the size of the semelparous
organism at the optimal age at reproduction. As a result, this optimal size
can be determined by

(@) % = u(d), ©

which results directly from (8) by viewing it as a necessary condition for the
optimal size rather than the optimal age. That is, at the optimal size, the
increase in reproduction with an increase in size multiplied by the change in
size in an additional unit of time (or age) must be counterbalanced by the
risk of death during that unit of time.

If environmental conditions worsen such that the rate of growth in re-
productive capacity at all ages decreases, when population equilibrium is
reached the new optimal &; is younger than &. If mortality increases, the
optimal age is also younger, &s. If both occur simultaneously, the optimal
age is even younger as.

Both (7) and (9) are true by definition, whatever functional forms are
used for m(«) and ¢(«). Specific functional forms can be used to make more
specific predictions. Mortality can be a declining function of size in many
species and is known to be so in semelparous plants (Metcalf et al. 2003).
An appropriate model could therefore be

b
p(a) = 0] +c, (10)

where b and ¢ are constants, and £(a) denotes size at age a. The parameter
b captures the causes of death that decline with size, b = 0 captures no size
dependence, and ¢ captures ubiquitous causes of death that are independent
of size. Reproductive output is generally an increasing function of size and
can be modelled as

m(a) = ¢&(a)", (11)
where ¢ is a scaling parameter and n determines whether there are economies
(n > 1) or dis-economies (n < 1) of scale in transforming size into reproduc-
tive output. Growth can be described using

dg

10075
= = kT — ke, (12)



where the parameter k£ captures how the growth rate increases with size, and
x modulates the increase so that eventually size reaches an asymptote. For
illustration, we use the exponent 0.75, following predictions from the fractal
model of scaling (West et al. 2001). However, using a different exponent
would not alter the main conclusions of the article. This equation provides a
fairly general description of asymptotic growth. If size at age 0 is 1, we have

f0=(E-(2-1) ) (13)

where the asymptotic size is defined by (£)%.

The optimal age of reproduction varies with respect to five of the six
model parameters: b and ¢, determining general and size-dependent levels of
mortality, £ and k, accounting for the speed and asymptotic form of plant
growth, as well as fertility’s scaling parameter n. Moreover, the substitution
of (10), (11), and (12) in (9) results in an expression for the optimal & that
is explicitly independent of the scaling parameter ¢.

T (R~ we) =g e, (14)
which reduces to
(i + )€ —nk&®™ +b =0 (15)

The latter is a quartic equation for £%-2° and its analytic solution is given by
Ferrari’s formula. Letting

k b 1 1 1
il B C={| —A2B+/—AB2 — B3

A: = —
nk+c’ nk+c’ 16 256 27

we can express the positive root of the quartic equation (14) as follows

A 1 [A? 2B 1 | 7A2 2B A3
£:_Z+§ Z+20+@+§ T+2C+%+ 5
4/ +20+ 28

(16)
Eq. (16) implies that & increases with A and decreases with B. Therefore,
the optimal size at reproduction ¢ will increase with positive changes in the
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reproduction scale parameter ) or the determinant of asymptotic size E, as

well as negative changes in mortality parameters b or c.

These mathematical results aid biological insight. Because optimal size
does not depend on the parameter ¢, species suffering proportional reduc-
tion in offspring production will, certibus paribus, not vary in flowering size
(Mylius and Diekmann 1995). An example of such proportional reduction
in offspring production might be density dependence of seed establishment
(Metcalf et al. 2003). Furthermore, if species’ relative ranking with respect
to asymptotic size k/k, scaling of reproductive output with size 7, and mor-
tality parameters, b and ¢, are known, relative ranking in terms of flowering
size could be predicted.

Optimal seed size and number

Let p(¢) be the probability that a seed germinates and grows to a = 0
and size £ = 1 when the plant can reproduce and initial size ¢ no longer
influences mortality. Generally p(¢) increases with seed size ¢ Venable and
Rees (2009). Let reproductive output, i.e., number of seeds produced, be
denoted by n(«,t) which is an increasing function of plant age (and size),
and a decreasing function of seed size. The net reproductive rate is then

Rla,t) = '@ = p(i) (o) n(a, ). (17)

D
Following the same logic as in eq. (1), (2), (4)—(8), this implies that optimal
age at reproduction satisfies

T/Loz<d7L) - /’L(&) = T<&7L) (18>
and the optimal offspring size is specified by

n,(a,t) + p(i) = r(a,i) (19)

where 1, (a, 1) = (dn(a,t)/da) /n(a, ) and 7, (o, ) = (dn(a,e)/de) [ n(a, )
are the relative derivatives of the number of offspring with respect to age at
reproduction and seed size, respectively, p(t) = (dp(c)/de) /p(c) is the rel-
ative derivative with respect to seed size of the probability that a seed of
size ¢ will reach size £ = 1. Because of the definition of stage 1 and stage
2, optimal time at reproduction depends only on « in stage 2 and does not
depend on time taken by a seed to grow to £ =1 (Kiflawi 2006).



If the population is in equilibrium, with » = 0, then

ha(dye) = (@) (20)

and

(e, t) = —p(i) (21)
Eq. (20) is similar to (8) and provides the same insight into the timing of
reproduction. Eq. (21), on the other, hand implies that optimal offspring
size is the size at which the benefits accrued through investing less in each
offspring and thereby producing more offspring are offset by the risk of mor-
tality for an offspring of that size.
Specific functional forms can be used to deepen understanding. The num-
ber of seeds n of size ¢ produced at age o can be determined by

_ ¢8(a)”

TL(O(, L) - L/B )

where (3 is a parameter that captures economies of scale in producing larger
offspring. The probability of reaching size £ = 1 can be specified by a function

(22)

p(L):<L_LO)7, 0<nv<l, (23)

1-— Lo
where ¢y is the minimal possible seed size and v accounts for the speed of

reaching reference size £ = 1. As a result, the optimal offspring size ¢ will be
the solution of (19) i.e.

Bro
B—7

L=

(24)

When is Optimal Seed Size Independent of
Optimal Adult Size at Reproduction

Eq. (24) implies that the optimal seed size ¢ does not depend on the optimal
plant size at reproduction €. Using (21) it similarly can be shown that
optimal plant size at reproduction does not depend on the optimal size of
the seeds produced. This mutual independence holds in general if the number
of seeds of size « produced at age « is proportional to the product of a function
of adult size and a function of seed size, i.e.
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n(a,t) = C F()G(a), C' = const (25)

In this case )
n, = F, (26)

does not depend on € and neither does p(:). Similarly,

fro = G (27)

Eq. (25) is the condition, in our framework, for the independence of the
parent’s optimal size at reproduction and the optimal seed size of its offspring.
Eq. (22) provides an example. The condition is not implausible but it also
is not trivial. For instance, in (22) [ might be a function of £: bigger plants
might be more efficient at producing large seeds than smaller plants are. Also
in (22), n might be a function of ¢: the relationship between plant size and
reproductive capacity may be modulated by seed size.

Note that the assumptions about a juvenile vs. an adult stage imply
that & is independent of y and & is independent of i; (see Figure 1). To
prove independence of optimal seed size and optimal size at maturity, it is
also necessary to show that éo and i; are independent. Eq. (25) gives the
condition for this.

The independence of two characteristics means that the optimal value
of either of them does not depend on the value of the other characteristic.
This causal independence is different from lack of empirical correlation. For
instance, suppose a species grows in two environments, one unfavorable (per-
haps because of poor soil or lack of sunlight) and the other favorable. Then
the time it takes a plant to grow from seed to adult size and the time it takes
for the plant to grow from adult size to maturity might be correlated across
the two environments: e.g., both times might be long in the unfavorable envi-
ronment and short in the favorable one. The long time to develop, however,
does not cause the long time to mature: the unfavorable environment causes
both and the correlation is merely a statistical association.

Conclusion

The simplicity of the semelparous life cycle permits formulation of general
mathematical models that predict key features of life histories. The analyt-
ical framework presented here unifies predictions of timing of reproduction
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and offspring size. This framework provides insights into how basic demo-
graphic features shape the diversity of age trajectories across species, and
proving in particular when dependence between optimal offspring size and
optimal size at maturity will occur and when it will not. These results permit
separation of these patterns from complications such as variation in growth,
across environments, individuals (Metcalf et al. 2003) and through time (Rees
et al. 2000). Variants of the models may also be relevant for other life-history
switches such as metamorphosis (Wilbur and Collins 1973).
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